0=-16x^2+160x+64

Simple and best practice solution for 0=-16x^2+160x+64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16x^2+160x+64 equation:



0=-16x^2+160x+64
We move all terms to the left:
0-(-16x^2+160x+64)=0
We add all the numbers together, and all the variables
-(-16x^2+160x+64)=0
We get rid of parentheses
16x^2-160x-64=0
a = 16; b = -160; c = -64;
Δ = b2-4ac
Δ = -1602-4·16·(-64)
Δ = 29696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{29696}=\sqrt{1024*29}=\sqrt{1024}*\sqrt{29}=32\sqrt{29}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-32\sqrt{29}}{2*16}=\frac{160-32\sqrt{29}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+32\sqrt{29}}{2*16}=\frac{160+32\sqrt{29}}{32} $

See similar equations:

| 3x÷7=70 | | 90=5x-5+3x+13 | | -6=-p+10 | | 5(3x-1)+2x-2=180 | | (x-3)(x=2)=0 | | x+40=(3x) | | n2+n=6480 | | 4.905x^2-10x+5.1=0 | | 5x^2+10x+60=4x^2-7x-12 | | 16.8–x=6x | | 5*(5-3d)= | | 5x-14=-3x-54 | | 2*x+5=-3*x-9 | | (2x+4)+46=90 | | 3x*4x=12x | | -5/3+2/5x=-3/2 | | 3(x+2)-10+4x=2x+1-3(x-1) | | -8.7=x/4-2.3 | | 49x2=256 | | 1.6+x/3=-3.2 | | 1.6+x/3=3.2 | | x(x-4.5)=0 | | 1/2x+6=3x-4 | | 6p-7=5p+5 | | 5(x+2)=2-(2x+1) | | 8x-12x=42-18 | | x+(4x+6)+(6x-2)=180 | | 9×-3y=7 | | 4c−3=13 | | (x)=3/2(x-4)(x-4)+3 | | 5x+34=2x+76=90 | | 30+8y=14y |

Equations solver categories